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On the Analytical Solution of the Ornstein—Zernike
Equation with Yukawa Closure
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We discuss the solution of the Ornstein-Zernike equation for most general
closure consisting of a sum of M Yukawa-type exponentials. A formal solution
for the factored case is bound for an arbitrary mixture of hard spheres intro-
ducing a general scaling matrix T’ of dimensions M x M. A sufficient number of
equations for this matrix is obtained from symmetry considerations and the
boundary condition. We discuss also restricted and semirestricted case, for
which explicit solutions in terms of the scaling parameters and input parameters
are found.
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1. INTRODUCTION

Analytical solutions of equations for fluid mixtures are necessary to study
phase transitions. Since the early work of Lebowitz,(!) much progress has
been achieved. In particular, the solution of the Yukawa closure of the
Ornstein—Zernike (OZ) equation by Waisman® has made possible a
number of extensions and generalizations to rather general closures of
arbitrary mixtures of spherical objects.®*!) There has been a number of
very interesting calculations using these solutions.!31%)
The solution of the general closure of the hard-core OZ equation

M
cy(r)= Z Kf.j")e’z"’r (1)

n=1
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was discussed in earlier publications.!”?’ Considerable simplifications were
achieved by Ginoza, who also discussed an interesting solvable case for the
arbitrary polydisperse mixture of hard spheres.!!*" If

Ki(jn) =K(n)di(n)dj(n) (2)

then a full solution of the Yukawa closure can be found for the case M =1,
in terms of a scaling parameter /. Much more manageable equations are
obtained for the more general case. .

In our work we give the general solution of the polydisperse case with
M arbitrary. The solution in much more complex than the single Yukawa
case because now it is necessary to introduce a scaling matrix I', and the
normal boundary conditions have to be supplemented by symmetry
relations to achieve a full solution. In the last section we discuss the
semirestricted case in which subsets of components satisfy electroncutrality
relations of the type

Zdi(")l’i0§=0, t=0,1,2,. (3)

where p; is the number density and o, is the diameter of species i. The
sum is over arbitrary subsets of component of the mixture. For this semi-
restricted case we obtain a full and explicit solution.

2. BASIC FORMALISM

We study the Ornstein—Zernike (OZ) equation
h,-j(12):c,-j(12)+2fd3 hy(13) prcy(32) (4)
k

where h,(12) is the molecular total correlation function and c,(12) is
the molecular direct correlation function, p; is the number density of the
molecules i, and i=1, 2 is the position r;, r;,=|r; —1I,|, and g, is the
distance of closest approach of two particles 7, j. The direct correlation
function is

M
c;(n)=3 KMe ™, r>o0; (5)

n=1

and the pair correlation function is

h(r)=g,(r)—1=—1, r<oy (6)
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We use the Baxter-Wertheim!®'®) (BW) factorization of the OZ
equation

0 —pAK) I -pC(k)1=1 (7)

where 1 is the identity matrix, and we have used the notation

H(k)=2f°c dr cos(kr) J(r) (8)

0

Elky=2 Jm dr cos(kr) S(r) ©)

0

The matrices J and S have matrix elements

Jl-j(r)=27trc ds shy(s) (10)
S,.j(r)=2nj°c ds scy(s) (11)
O—pCk)1=[1-pQk)I[1—pQ"(k)] (12)

where Q7(—k) is the complex conjugate and transpose of Q(k). The first
matrix is nonsingular in the upper half complex & plane, while the second
is nonsingular in the lower half complex & plane.

It can be shown that the factored correlation functions must be of the
form

d(k):l—pjw dr ¢* @(r) (13)

i
where we used the following definition:

j’ji:%(aj_o-i) (14)

S(r)=Q(r)— | dr, Q(r,) pQ(r, — 1) (15)

Similarly, from Eqs. (12) and (7) we get, using the analytical proper-
ties of Q and Cauchy’s theorem,

J(r)=Q(r) + [ dr J(r—ry) pQUr,) (16)
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The general solution is discussed in refs. 8 and 10, and yields

g, (r)=q5(r) + Z Dye =, Ay<r (17)

n=1

qy(r)=(1/2) 4,0 (r—0,/2)* = (0/2)* 1+ B, (r — 6;/2) = (5,/2)]
by Cie=mm2[e=ar=o) _g=ao2] j.<r<g, (18)

n=1

The solution of this system of equations leads to

71?

ﬂ-— + Zu(”’ (19)
and
A4;= ?[H—Qﬂ+ZMW} (20)

Furthermore, the coefficients of all the exponentials must satisfy
Eq. (16),

C(")+D(")—2yf")D(") (21)
We have used
{a=) proy (22)
k
A=1—7(,/6 (23)
v =218 ,(2,)p,/2, (24)
(n)_zp Cﬂ )Dg{)e—znakj (25)
M™M=y p,C¥(z,) DIe % (26)
k
= drrgy(r)e (27)
0
1 2
CZ(Zn)_Z 0.2 chrkl},l(ci;)z al‘pl(zno-l)"f_izzﬂz% (28)
1+2z,0,

Clz) =Y o™y 0 z,0.8:(~z,0) ——* (29)
!
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with
Yi(x)=[1—x2—(1+x/2)e ~]/x’ (30)
¢i(x)=(1—x—e ¥)/x? (31)
Polx)=(1—e"")/x (32)

The following relation is useful:
X y(x)= —1+ (1+x/2) go(x) (33)
Some quantities will be of interest:

g;(A;)= —0a.B; +Z [(C"”’+D"”’) ~EZmAi Cime=2mo] (34)
which can be expressed as

qij(/lji) 0'10'12 ZF(m) (35)

m

where we have defined the convenient quantity
F(m)_2 . (m) (C(m) +D(m))e~2m?~/l+ C(m)e~2m0ji (36)
) ‘u] 17
or

2
Fim = ;a W™ — [(CY + D)1 — e o) 4 DM~ o] g~k (37)

Because of the symmetry of the direct correlation function, we require
from Eq. (15)

4;(4;0) = g (4y) (38)
which implies that F 5.’"’ must satisfy the symmetry relation
Fim =Fm (39)
Using the relations (25) and (26), we verify

m " s 1
M (2t 5 1) =g (40)



254 Blum et al.
with
!

We change Eq. (20) to

m
4=+ Y (S = 22,1™] (42)
where
2n 1 =
a=2143050] 43)

We obtain the contact pair correlation function from the discontinuity of
the first derivative of the factor function g;(r), Eq. (17):

M
yO=2m0,8,(0,)=q5(0;7)— (07 )=A;(6,/2) + B, — Y, 2, Cye
m=1
(44)
Using the continuity relation‘®*
q;’j(lji)+qj"i(/1ij)= _Zpk‘hj(’{ki) Qij(lkj) (45)
k
and
M
@)= —A;(0/2)+ ;= 3 2, (Cy" + Df)e % (46)
m=1

we get the following relation for the contact pair distribution function:

1
2n0,;84(0,) — 210, g5(0,) = 3 Y |:zm(Fi(j’") +FM) — kz ka,(q’.”)F,g’)] (47)
where gg.(o-,-j) is the contact pair distribution of the hard-sphere reference
system.

From Eq. (16) we can show that the Laplace transform of the pair
correlation function must satisfy the consistency relation

27TZ gil(zn)[élj_plqjl(izn)] =‘72-/(i2n) (48)
/
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where

iz) = dre " Tg(n]’

ey

—ZnGjy
[(” ,, '>A”nﬁf}e —Y e GrmnC (49)

2 m Zn T Zm
The Laplace transform of Egs. (17) and (18) yields
e gy(iz,) = 0}W1(2,0.) 4+ 07 9,(2,0) B,
* Z Z,t

ST ImZ U¢o(2n6,) Cyrle ] (50)

CYm 4 D )e i — Clm g = nci

Using Eq. (44), we get

2

, z
gy liz,)=e "z} [A +2,y 042,y —" e‘z’"”'fo.}”’:| (51)

m “n Zm

After some lengthy but straightforward algebra we find the following
simplification of the result of Ginoza®:

72,,,0,

("”sz[z QR —QUIIY + QPITIM]  (52)

mp=3y<

where
Q(M) =CH 2n (m) Zmdoy 5

i = i(Zm)jpio-j—yji Zmo'j¢0(2m0'j)e — 0y (33)

and
2n Z,
175,-’”)=—Cf-‘(zm)jp,»(1+ - >+y""> ~m“f'—2— ,Zplal Qy  (54)
Notice that
F;’”’—ZQ(’"’D‘M)e*Z'""ﬂ (55)

and also that /7" and QU™ are functions of the same set of parameters,
and therefore

8,4+ Q0 +0,¢(z,,0,) 1T

2n

- -F| o)+ e Tonar | o

822/66/1-2-17
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The MSA closure condition (5) yields
27'5Ki(jn)/zn=ZD§7)[5U“PI‘7j1(iZn)] (57)
I

This expression can be combined with (48) to obtain an expression for the
excess MSA energy due to the interaction n

! s
oK =5- 3 pD g5 iz,) (58)
! !

Equations (52) and (58) are the full solution of the general problem, since
we have a set of algebraic equations for y{™ as a function of K™ We
must, however, first solve Eq. (52) for the unknown D{".

3. FACTORED INTERACTION: GENERAL CASE

As was observed by Ginoza,'®!" when the interaction is of the form
() — Km) g gn)
K = K™ a4 (59)

then the solution simplifies considerably. Let us first define the energy
parameter®

Bj('n)zz“an;n)'})j({’) (60)
Then, from Cauchy’s theorem and Eq. (15), we get
Df_j") = _di(n)aj(_rz)ez,,cr//z (61)
Furthmore, from Eq. (21) we get
CO = (d™ — B™/z,)al" e (62)
After much algebra we find*%!V

2n

U =afa (63)
where
) 2n 4 1), — 20042
A0 = — =Y Cliz,) e (64)
t

From Eq. (35) we obtain
F}j") = Xﬁ”)a}”) (65)
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where we have defined
)= Z _Q(n)d(n ~ 22042
=d"e o 4 6, BV ey (z,0,) + 0,4 (66)
The contact pair correlation function (44) becomes
2n0 ;5 8,(0,)=2n0; go(0,;) + Y e —z,X"yal” (67)
where we have defined [see Eq. (54)]

A=Y [0d®e o

t

=B\ e + (1+ 5 )A("’ﬁ-ﬁa]Zp,o‘,X“ (68)

Equation (54) now becomes

A=Y
4 ~ ZntZm

a™ Y p, [z, XX + XM — XM (69)
/

For any given value of # the parameter I1{”, X are related to each
other, since they are only functions of the external parameters and Bj(.”’.
From Eqs. (66) and (68) we have

YHP =3 X" IP—de 2 (70)
{ /
where
) _ 2n 3
g =050 Dolz, )“A‘Pzazo'j wl(znaj) (71)
and

n 2n g,Z2,
I =0t 03 37 0= 015 )| 1L g ot D52 | (72

This equation can be written in the form

0 bolza ) I — X[ +d (e 0

_aqummwudAj%u )Y a0, X" (73)
!
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The closure condition (57) is

—z,,u/Z
2n1<<">d<"> . +Y an sy
I

n

-2

m

(S oeatagn )| 3 e =z, xm) - s | <o
Z, +Zm P J

(74)

A different closure is obtained from Eq. (58),

ez,,a'j/Z
2K MBI
J

21 .
= —Z?Zplagn){l
-3 (Toarar)

1
-z, X(”’)—l— A("’)—i— PNz, +z2,+50,2,2, } (75)
A4z, 2

(o))

where P is defined by

P('")——-;ZP:[:J;H(M—}—X('”)(I-{‘CQ )}

m |
A
=2 p0, X{" ——2,4" (76)
] T
A full solution of the multi-Yukawa, multicomponent mixture requires

the introduction of a scaling parameter. The most convenient scaling
relation is obtained from Eq. (69),

om=—YrI,,Xm (77)

where I, is an M x M matrix of scaling parameters. From the symmetry
of the direct correlation function at the origin, Egs. (35) and (65), we have

qij()“ji) = qji(}’ij)
T X0 =3 X al (78)
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which implies that
a"=Y A,,X" (79)

and also that there are M(M — 1)/2 symmetry relations
Aritn = Anm (80)

From the symmetry of the contact pair correlation function (44)
we get

gij(aij) = gji(Uij)
S (I =2, X")a =Y (17— 2, X)al” (81)

n n

from which we get the scaling relation

mny

nw—z,x"=y 1,,a™ (82)

and a new set of M(M — 1)/2 symmetry relations
Ymn = Ynm (83)

The three scaling matrices I', A, and Y are related to each other. From
Eqgs. (77), (80), and (82) we get by substitution

—(C+z:h=Y-A (84)

where z is a diagonal matrix of elements z,, and 1 is the unit matrix.
Furthermore, using the scaling relations and Eq. (69) we get

M-A=T (85)
where the matrix M has elements

1 ,
(M1 ==Y pilzn XX + XM~ X O™ (86)
n m

Solving these equations yields
M-1.T=A (87)

and
—(+z- T H-M=Y (88)
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The symmetry requirements are then

M-t-r=r7-(m-'}7 (89}
and
(l+z: T H-M=M7-I+[']7-2) (90)

where the superscript 7 indicates that the transpose of the matrix is taken.
We have therefore a total of M(M — 1) symmetry relations, which together
with the M closure equations (74) or (75) gives the required equations for
the M? elements of the matrix I.

4. THE SEMIRESTRICTED CASE

In spite of simplifications of the last section, the solution of the
numerical equations for the factored interaction case is still complicated. As
is the case for ionic systems,®?” a much simpler set of equations is
obtained when an electroneutrality relation is satisfied. If we also assume
that all the moments of the diameters are zero

YdMpo'=0, =0,1,2,..

then one can show that P and A4 are also zero. We remark that this
does not imply necessarily that all the ions should be of the same size, but
that subsets of ions of equal size are neutral.

From Eq. (73) we get now

9, 90l2n )T = X[ 4 dff e = 0 G
From Eq. (68) we find
1 = B o2 (92)
and from Eq. (66)
X =dMe 2 46 B2 (2 5)) (3)

Using the scaling relation (77)~, we obtain from Eq. (91)
z [5mn+aj¢0(znaj)rmn]Xj(m)=dj(n)e_zn6j/2 (94)

m

which yields an explicit (actually as explicit as possible!) expression for
X; ™) in terms of the scaling parameter matrix I'. Similarly, we can write the
matrlx M

Z (Zm mq pn rpnémq+rqm5pn)5pq (95)

qu

W] =
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with
qu:ZplX[(p)Xl(q) (96)
/

which, because of Eq. (94), is also an explicit function of T
In the semirestricted case the closure relations are, from Eq. (75),

2n 1 - - -
Zxonp - -3 —— (o) a1 -z, xm)  01)

Zy m Zn + Zm k
and from the scaling we get

2r

s[Eror, o3
P

— (Zpka}:)a;@) (rm,,+zm5,,m)]x;ﬂ-’=o (98)
n m k

n m

which is a homogeneous system of equations for X /.“” ). Tt has a nontrivial
solution only when the determinant of the matrix enclosed by the square
brackets is zero. Thus there are M closure conditions arising from this con-
dition. This is the generalization to the multi-Yukawa formula.!!
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